In Silico EVALUATION OF CHEMICAL TOXICITY OF CERTAIN NON-STEROIDAL ANTI-INFLAMMATORY DRUGS

PDF

Published: 2021-07-07

Page: 606- 616


PANDARAM PALANISAMY *

Department of Chemistry, Pioneer Kumaraswamy College, Nagercoil, Tamilnadu, India.

GEORGE REXIN THUSNAVIS

Department of Chemistry, Pioneer Kumaraswamy College, Nagercoil, Tamilnadu, India.

RAMASAMY SUBRAMANIAN

Department of Chemistry, M. S. University College, Govinthaperi, Tamilnadu, India.

*Author to whom correspondence should be addressed.


Abstract

In our study, we collected five commonly used non-steroidal anti-inflammatory drugs, including Ketorolac, Aspirin, Naproxen, and Diclofenac. In our DFT results, Diclofenac has the lowest energy gap (-0.5827 eV), highest ionization potential (5.0983 eV), highest electron affinity (5.6810 eV), highest electronegativity (5.3897 eV), lowest chemical potential (-5.3897), lowest dipole moment (1.1282) and lowest energy (-1657.106). The Pro Tox II web server was used to determine the toxicity of drugs based on their chemical structure. Diclofenac has the lowest LD50 (53 mg/kg) value in comparison to Ketorolac (LD50=189 mg/kg), Naproxen (LD50=248 mg/kg), Aspirin (LD50=250 mg/kg), and Ibuprofen (LD50=189 mg/kg). All these non-steroidal anti-inflammatory drugs target hepatotoxicity, as well as nuclear receptor signalling pathways, including aminooxidase A and prostaglandin G/H synthase 1. Diclofenac was found to be more toxic than other NSAIDs in toxicity studies, and its results matched those found in DFT studies.

Keywords: NSAIDs, DFT studies, Pro tox II, ibuprofen, aspirin and diclofenac


How to Cite

PALANISAMY, P., THUSNAVIS, G. R., & SUBRAMANIAN, R. (2021). In Silico EVALUATION OF CHEMICAL TOXICITY OF CERTAIN NON-STEROIDAL ANTI-INFLAMMATORY DRUGS. Asian Journal of Advances in Research, 4(1), 606–616. Retrieved from https://jasianresearch.com/index.php/AJOAIR/article/view/102


References

Garcia J, Altman RD. Chronic pain states: Pathophysiologyand medical therapy. Semin Arthritis Rheum. 1997;27:1-16.

Fries JF, Williams CA, Bloch DA, Michel BA. Nonsteroidalanti-inflammatory drug-associated gastropathy:incidence and risk factor models. Am JMed. 1991;91:213-22.

Brigden M, Smith RE. Acetylsalicylic-acid-containingdrugs and nonsteroidal anti-inflammatory drugsavailable in Canada. Can Med Assoc J. 1997;156:1025-8.

Barrier CH, Hirschowitz BI. Current controversies inrheumatology. Controversies and management of nonsteroidalanti-inflammatory drug induced side effects onupper gastrointestinal tract. Arthritis Rheum. 1989;32:926–9.

Bjarnason I, Hayllar J, Macpherson AJ, Russell AS. Sideeffects of nonsteroidal anti-inflammatory drugs on thesmall and large intestine. Gastroenterology. 1993;104:1832–47.

Colin R. Digestive complication of non-steroid anti-inflammatory drugs. Schweiz Med Wochenschr. 1991;121:716-21.

Mohamed AH, Salena BH, Hunt RH. NSAIDinducedgastroduodenal ulcers: Exploring the silentdilemma. J Gastroenterol. 1994;29:Suppl 7:34-8.

Hawkey CJ. Non-steroidal anti-inflammatory druggastropathy: causes and treatment. Scand J Gastroenterol1994;29:Suppl 220 M:124-7.

Schneider G, Fechner U. Computer-based de novo design of druglikemolecules. Nature Reviews Drug Discovery. 2005;4(8):649-663.

Mallinson TE. A review of ketorolac as a prehospital analgesic. Journal of Paramedic Practice. 2017;9(12):522-526.

Wiseman LR, Mc Tavish D. Formestane. A review of itspharmacodynamic and pharmacokinetic properties and therapeuticpotential in the management of breast cancer and prostatic cancer. Drugs. 1993;45(1):66-84.

Bandgar BP, Adsul LK, Chavan HV, Jalde SS, Shringare SN, et al. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorganic & Medicinal Chemistry Letters. 2012;22(18): 5839-5844.

Moniruzzaman, Mohammed Jabedul Hoque, Mohammad Nasir Uddin, Amrin Ahsan, Tareq Mahmud, Quantum Chemical, Molecular Docking, and ADMET Predictions of Ketorolac and its Modified Analogues, Biomedical Journal of Scientific & Technical Research. 2018;11(5): 8723-8729.

Malgorzata N Drwal, Priyanka Banerjee, Mathias Dunkel, Martin R Wettig, Robert Preissner, Pro Tox: A web server for the in silico prediction ofrodent oral toxicity, Nucleic Acids Research. 2014;42:w53-w55.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT; 2009.

Foresman JB, Frisch A, Exploring Chemistry with Electronic Structure Methods, Gaussian, Pittsburg, Pa, USA; 1995.

Pauling L. The nature of the chemical bond, Cornell University Press, Ithaca, NY, USA; 1960.

Senet P. Chemical hardnesses of atoms and molecules from frontier orbitals, Chemical Physics Letters. 1997;275:527–532.

Parr RG, Pearson RG. Absolute hardness: Companion parameter to absolute electronegativity, Journal of the American Chemical Society. 1983;105:7512–7516.

Bouanane X, Bounekhel M, Elkolli M, Abrigach F, Khoutoul M, Bouyala R, et al. Synthesis, structural, catecholase, tyrosinase and DFT studies of pyrazoloquinoxaline derivatives, Journal of Molecular Structure. 2017;1139:238– 246.

Drawal MN, Banerjee P, Dunkel M, Wetting MR, Preissner R. ProTox: A web server for the in-silico prediction of rodent orel toxicity, Nucleic Acids Research. Web Server. 2014;42:W53–W58.

Priyanka Banerjee, Andreas O Eckert, Anna K Schrey, Robert Preissner. ProTox-II: A webserver for the prediction of toxicity ofchemicals, Nucleic Acids Research, Web Server. 2018;46:W257–W263.

Raies AB, Bajic VB. In silico toxicology: Computationalmethods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016;6:147–172.

Richard AM., Williams CR. Distributedstructure-searchable toxicity (DSSTox) public database network: Aproposal. Mut. Res. 2002;499:27–52.

Lea IA, Gong H, Paleja A, Rashid A, Fostel J. CEBS: Acomprehensive annotated database of toxicological data. Nucleic Acids Res. 2017;45:D964–D971.