STUDY ON ELASTIC, THERMODYNAMIC, AND OPTICAL PROPERTIES OF Y2TI2O7 PYROCHLORE DETERMINED BY A SEMI-EMPIRICAL METHOD AT 300 K

PDF

Published: 2021-12-06

Page: 1340-1351


DIMPLE L. LILA

Department of Physics, Saurashtra University, Rajkot 360005, India.

SHREY K. MODI

Department of Environment Engineering, L. D. Engineering College, Ahmedabad 380015, India.

NIKETA P. JOSHI

Department of General, Government Polytechnic, Bhuj 370001, India.

POOJA Y. RAVAL

Department of Physics, C. U. Shah University, Wadhwan City, Surendranagar 363030, India.

NIMISH H. VASOYA

Department of Balbhavan, Children´s University, Sector-20, Gandhinagar 382021, India.

KUNAL B. MODI *

Department of Physics, Saurashtra University, Rajkot 360005, India.

HIREN H. JOSHI

Department of Physics, Saurashtra University, Rajkot 360005, India.

*Author to whom correspondence should be addressed.


Abstract

First-ever a straightforward semi-empirical method is employed to compute elastic parameters (elastic wave velocities, elastic moduli, Debye temperature), thermodynamic parameters (molar heat capacities at constant volume and pressure, Debye temperature, electronic contribution to molar heat capacity, lattice potential energy), and optical parameters (refractive index, optical energy bandgap, dielectric, electronic and ionic polarizabilities) for pyrochlore-type yttrium-titanate (Y2Ti2O7) at 300 K. The results of our calculations are compared with the existing experimentally and theoretically determined data. The quite satisfactory agreement between the two validates the approach adopted. The value of molar heat capacity at constant volume computed based on the Einstein theory for pyrochlore is accordant with theoretically predicted value from the law of Dulong and Petit while the Debye theory fails to estimate the consistent value at 300 K. It appeared that electronic molar heat capacity contributes ~ 0.5 % to the total molar heat capacity and the electronic and lattice molar heat capacities are comparable at 14.5 K. The applicability of the oxide additivity rule is examined and found successful in predicting the dielectric, electronic, ionic polarizabilities and lattice potential energy of the complex oxide composition. The semi-empirical method used in the present investigation is found quite simple as compared to previous cumbersome evaluation methods.

Keywords: Seed alfalfa, Pyrochlore, bee pollinators, elastic parameters, solitary wild bees, thermodynamic parameters, agro-ecosystems, optical parameters, southern Russia, oxide additivity rule, nomadic bee populations, neonicotinoids


How to Cite

LILA, D. L., MODI, S. K., JOSHI, N. P., RAVAL, P. Y., VASOYA, N. H., MODI, K. B., & JOSHI, H. H. (2021). STUDY ON ELASTIC, THERMODYNAMIC, AND OPTICAL PROPERTIES OF Y2TI2O7 PYROCHLORE DETERMINED BY A SEMI-EMPIRICAL METHOD AT 300 K. Asian Journal of Advances in Research, 4(1), 1340–1351. Retrieved from https://jasianresearch.com/index.php/AJOAIR/article/view/23


References

Suganya M, Ganesan K, Vijaykumar P, Gill AS, Ramaseshan R, Ganesmoorthy S. Scr. Mater. 2020;187(227).

Johnson MB, James DD, Bourque A, Dabkowska HA, Galin BD, White MA. J. Solid State Chem. 2009;182:725.

Soulie A, Menut D, Crocobette JP, Charter A, Selami N, Sattonnay G, Monet I, Bechade JL. J. Nucl. Mater. 2016;480:314.

Terki R, Bertrand G, Aourag H, Coddet C. Phys. B.: Cond. Matter. 2007;392(1-2):341.

Matteucci E, Cruciani G, Dondi M, Baldi G, Barzanti A. Acta. Mater. 2007;55(7):2229.

He LF, Shirahata J, Nakayama T, Suzuki T, Suematsu H, Ihara I, Bao YW, Komatsu T, Niihara K. Scr. Mater. 2011;64:548.

Luan Y. Ph. D. thesis, University of Tennesee; 2011.

Scott PR, Midgley A, Musaev O, Muthu DVS, Singh S, Suryanarayana R, Revcolevschi A. High Press. Res. 2011;31(219).

Panero WR, Stixrude L, Ewing RC. Phys. Rev. 2006;70:054110.

Jiang Y, Smith JR, Odette GR. Acta Mater. 2010;58:1536.

Farmer JM, Boatner IA, Cakomakos BC, Du MH, Lance MJ, Rawn CJ, Bryan JC. J. Alloy. Compd. 2014;605:63.

Pruneda JM, Artacho E. Phys. Rev. 2005;72:085107.

Verma PK, Ph. D. thesis, IISc., Bangalore, India; 2020.

Shimamura K, Arima T, Idemitsu K, Inagaki Y. Int. J. Thermophys. 2007;28:1074.

Karthick G, Karati A, Murty BS. J. Alloy. Compd. 2020;837:155491.

Tang CC, Chiu YS, Chang CW, Chuang LC. J. Solid State Chem. 2011;184(3):563.

Ting CC, Chang CW, Chuang LC, Li CH, Chiu TS. Thin Solid Films. 2010;518(20):5704.

Terki R, Bertrand G, Aourag H, Coddet C. Phys. B. 2007;392:341.

Smith J, Wijn HPJ. John Wiley and Sons, NY; 1959.

de Podesta M. Understanding the Properties of Matter, 2nd ed., Taylor & Francis, NY; 2002.

Birch F. Geo Phys. J. Int. 1961;4:295.

Baldev R, Rajendran V, Palanichamy P. Norosa Publishing House, New Dehli; 2004.

Malaeb W, Basma H, Me. M Barakat and R Awad, J. Supercond. Nov. Magn. 2017;30:3595.

Modi KB, Shah SJ, Pujara NB, Pathak TK, Vasoya NH, Jhala IG. J. Mol. Struc. 2013;1049:250.

Tariq S, Ahmed A, Saad S, Tariq S. AIP Adv. 2015;5:077111-1-9.

Kudriavtsev BB. Soviet. Phys. Acoust. 1956;2:172.

Lakhani VK, Modi KB. Solid State Sci. 2010;12:2134.

Modi KB, Raval PY, Shah SJ, Kathad CR, Dulera SV, Popat MV, et al. Inog. Chem. 2015;54(4):1543.

Kapustinskii AF. Quart. Rev. Chem. Soc. 1956;10:283.

Glasser L, Jenkins HDB. J. Am. Chem. Soc. 2000;122(4):632.

Shannon RD, Rossman GR. Am. Min. 1992;77(1-2):94.

Mu L, Feng C, He H. MATCH Commun. Math. Comput. Chem. 2006;56:97.

Modi KB, Supercond J. Nov. Mag. 2016;29(9):2287.

Callister WD. Materials Science and Engineering: An Introduction, John Wiley and Sons, NY; 2000.

Garai J. Physics behind the Debye temperature, arxiv: Physics/0703001. 2007; 3(1):1-8.

Kojitani H, Nisgimura K, Kubo A, Sakashita M, Aoki K, Akaogi M. Phys. Chem. Minerals. 2003;30:409.

Modi KB, Jha PK, Raval PY, Vasoya NH, Vyas KG, Meshiya UM, et al. Acta Phys. Polonica A. 2016;130(3):778.

Waldron RD. Phys. Rev. 1955;99(6):1727.

Shannon RD, Rossman GR. Am. Min. 1992;77:94.

Maj S. Phys. Chem. Miner. 1984;10:133.

Modi KB, Raval PY, Pansara PR, Badi IR, Devmurari DR, Munshi SS, et al. J. Superond Nov. Magn. 2016;29:1931.

Birch F. J. Geophys. Res. 1964;69(20):4377.

Johnsan B, Walton AK. Brit. J. Appl. Phys. 1965;16(4):475.

Wodecka-Dus B, Czekaj D. Arc. Metall. Mater. 2009;54:923.

Wohlecke M, Mareelo V, Onton A. J. Appl. Phys. 1977;48(4):1748.

Ravindra NM, Ganapathy P, Choi J. Inf. Phys. Tech. 2007;50:21.

Widanarto W, Sahar MR, Ghosal SK, Arifin A, Rohani MS, Hamzah K, Jandra M. Mater. Chem. Phys. 2013;138:174.

Shannon RD, Shannon RC, Medenbach O, Fischer RX. J. Phys. Chem. Ref. Data. 2002;31:931.

Kakani SL, Hemrajani C. A Text Book of Solid State Physics, 3rd ed., Sultan Chand & Sons, New Delhi, India. 1997;232.